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1. Introduction 

The US Army Research Laboratory’s (ARL’s) Robotics Collaborative Technology 
Alliance (RCTA) is an alliance of robotics research institutions working together 
to transform robots from tools that Soldiers use into teammates with which Soldiers 
can work. One desired ability of such a teammate is the ability to plan motion over 
a variety of surfaces in a manner that conserves energy. To further research into 
this capability, researchers from Florida State University and Carnegie Mellon 
University developed planning algorithms that select routes based on terrain and 
the vehicle’s motor system. In practice, the robot learns appropriate parameter 
values by conducting a set of trial maneuvers and then uses these parameters for 
energy-efficient path planning. 

In June of 2016, these capabilities were assessed at Florida State University. The 
assessment consisted of learning terrain parameters for asphalt and grass, and then 
navigating a path through obstacles on a flat patch of grass or asphalt. In Section 2, 
we describe the integrated system and the algorithm that was assessed. Section 3 
describes the methodology of the assessment, Section 4 presents the assessment 
results, and Section 5 contains our conclusions. 

2. Robotic System 

In this section, we describe the equipment and technology that played a key role in 
the assessment. We start with the robotic platform, including the sensors and 
computational power, followed by a description of the planning and learning 
algorithms. 

2.1 Robotic Platform 

The robot used in the integrated assessment is a Clearpath Husky, equipped with 3 
Mac Mini machines, each with 2.3 GHz quad-core processors, used for hardware 
control, planning, maintaining a map of the environment, and communicating with 
the user. A fourth computer with a 1.2 GHz Intel Core 2 DUO processor ran a visual 
odometry algorithm. The input for the visual odometry was provided by the upper, 
and downward facing, Bumblebee 2 stereo camera shown in Fig. 1. A Hokuyo lidar 
was used for obstacle detection. Linear Hall effect sensors were attached to each of 
the motor’s sides to measure wheel speed for the learning phase. 
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Fig. 1 ClearPath Husky used for the assessment. The upper camera (A) was used for visual 
odometry, and the lower (B) was not used at all. The lidar (C) was used for obstacle avoidance.  

2.2 Dynamically Feasible Energy-Efficient Motion Planning 

Skid-steer robots are commonly used as robotic platforms because they are simple 
and robust. But in order to turn, the wheels of such a vehicle must skid or slip, a 
terrain-dependent action that complicates localization.1 Sharp turns may also 
require motor torque in excess of what the vehicle can provide, which can lead to 
route re-planning and wasted energy.1 Gupta et al.2 proposed a method of planning 
that constrains paths to those that are dynamically feasible given a terrain type, 
payload, and vehicle model. It does so by estimating the required torque for a turn 
given the terrain, and then sampling possible path extensions, rejecting those that 
demand torque in excess of what the vehicle could provide. This search is guided 
by a heuristic with a preference for energy-efficient paths. To estimate the torque 
required for a turn, the model requires the setting of parameters related to the 
platform structure and mass, and the resistive forces of friction. That means that 
given a known, skid-steered platform and known payload, the model requires only 
parameters depending on terrain type. 

2.3 Learning of Terrain-Dependent Models 

The robot begins with a kinematic and a friction model that has been learned based 
on a theoretical model and prior navigation. When the robot faces new terrain, the 
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system drives along a diagnostic path, varying speed and turning radii. The robot 
then updates its previously learned models based on its more recent navigation 
experience. The physical experiments to date have been conducted on flat terrain. 
The theoretical model in Gupta et al.2 was constructed to support navigation on a 
plane with constant slope, although physical experiments have been conducted only 
on terrain with zero or negligible slope. For terrain with varying slope, the terrain 
could likely be approximated by the robot as a union of segments of planes, each 
with constant slope, and with the sampling algorithm choosing sample paths within 
plane segments. Alternatively, an approximate plane could be fit to the terrain, the 
path calculated on the approximate path, and then executed on the actual terrain. In 
this case, areas of actual terrain with the greatest difference from the approximated 
plane could be avoided by using the residuals of the fit as part of the planning 
heuristic. 

2.4 Purpose of the Experiment 

These algorithms have been integrated with the RCTA world model3 that is 
examined in Lennon et al.,4 so that learning of terrain models and energy-efficient 
motion planning can be performed online by the RCTA system. This experiment 
was intended to compare minimum distance motion planning with the energy-
efficient planning method from Ordonez et al.1 to determine if the latter was more 
energy efficient. A secondary purpose was to verify that the learning process of 
Section 2.3 does improve the planning described in Section 2.2. 

3. Experimental Design 

The design of the experiment was effected substantially by environmental 
conditions. A sudden tropical storm brought rain during the week of the assessment, 
with the result that the assessment needed to be compressed into 1 day to avoid the 
rain. This limited the number of runs we could conduct, but did not change the basic 
structure of the experiment. The assessment consisted of navigation over a flat 
patch of asphalt or grass, with a series of obstacles placed on it. The key factors and 
variables are listed in Table 1. If more time had been available, more terrain types 
would have been included. The terrain type was not originally thought to be a factor 
related to planner performance, but only a source of variation in performance, along 
with obstacle configuration. Obstacle configurations were not kept the same 
between the grass and asphalt configurations, because this would have required 
more time to carefully place obstacles, and we believed that this time was better 
spent by getting in more runs. 
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Table 1 Variables and factors 

Factor/Variable Levels 
Planning type Minimum distance, energy efficient, energy efficient without learning 

Terrain Asphalt, grass 

Obstacles Configurations of obstacles were treated as blocks 

Energy used The energy in joules used during the run (continuous variable) 

Collisions Count of the number of collisions with obstacles (whole number) 

 
The terrain types considered were asphalt and grass, and the obstacles were 
cardboard cylinders that the robot would need to steer around. Each separate 
configuration of cylinders was treated as a block, with the intent of examining the 
difference in performance of the algorithms within each block. Since the primary 
purpose was to compare energy-efficient planning with learning against minimum-
distance planning, the planning type was kept at 1 of these 2 levels for 32 out of the 
36 runs. The overall number of runs (36) was determined by the time restrictions. 
An example of a set up course is shown in Fig. 2, and the design is shown in Table 2. 
In this table, configuration refers to a given setup of barrels, and the algorithm 
values are: minimum distance (MD), energy efficient (EE), and energy efficient 
without learning parameter values (EE Default). The intent was to allow a 
comparison between the amount of energy used by the minimum-distance and 
energy-efficient planners within each block. This would provide 16 comparison 
values to assess the difference between the minimum-distance and energy-efficient 
planners, and 4 comparison values for energy-efficient planning with and without 
learning. The order of the algorithms was randomized within the blocks. We did 
not originally intend to compare the performance of the planners by terrain type. 

 

Fig. 2 Representative course layout. The goal position is marked by an orange cone. 
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Table 2 Design for the experiment  

Run Terrain Configuration Planning algorithma 

1 Asphalt 1 MD 
2 Asphalt 1 EEP 
3 Asphalt 2 EEP 
4 Asphalt 2 MD 
5 Asphalt 3 EEP 
6 Asphalt 3 MD 
7 Asphalt 4 EEP 
8 Asphalt 4 MD 
9 Asphalt 5 EEP 

10 Asphalt 5 MD 
11 Asphalt 6 MD 
12 Asphalt 6 EEP 
13 Asphalt 7 MD 
14 Asphalt 7 EE Default 
15 Asphalt 7 EEP 
16 Asphalt 8 EE Default 
17 Asphalt 8 MD 
18 Asphalt 8 EEP 

Change locations 
Run Terrain Configuration Algorithm 
19 Grass 9 EEP 
20 Grass 9 MD 
21 Grass 10 MD 
22 Grass 10 EEP 
23 Grass 11 MD 
24 Grass 11 EEP 
25 Grass 12 MD 
26 Grass 12 EEP 
27 Grass 13 MD 
28 Grass 13 EEP 
29 Grass 14 EEP 
30 Grass 14 MD 
31 Grass 15 EEP 
32 Grass 15 EE Default 
33 Grass 15 MD 
34 Grass 16 EE Default 
35 Grass 16 MD 
36 Grass 16 EEP 

 a Algorithm was minimum distance (MD), energy efficient (EE), or energy efficient without terrain learning   
 (EE Default).  
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The most important dependent variable was the actual energy expended during the 
run, but the following were also recorded: 

• whether a collision occurred 

• time taken to finish the run (Time) 

• number of times re-planning occurred to avoid collision (CollisionReplan) 

• number of times tracking re-planning occurred. These re-plans are generally 
caused by localization error because of issues with perception, slipping, or 
skidding (TrackingReplan) 

The Appendix includes recorded data from all runs (Table A-1) and all variables 
and their definitions are listed in Table A-2. 

The expectation was that with energy-efficient planning, CollisionReplan and 
TrackingReplan should be no greater than the number of such occurrences under 
minimum-distance planning, and that time should not differ substantially between 
the 2 planning methods. These comparisons were not central to the experiment, and 
we planned to subject them only to exploratory data analysis, without any direct 
testing. 

4. Results 

The experiment occurred on June 7, 2016, during a break in a tropical storm, with 
the runs on the asphalt lasting from about 0900 to 1200, and the runs on the grass 
lasting from about 1300 to 1600. We break our examination of results into 
subsections, with the first being a comparison of the 2 planners with respect to the 
difference in energy expenditure and the difference in the number of collisions with 
obstacles. The second is an exploration of the time required to complete the course 
and the number of re-planning attempts. 

4.1 Energy and Collision 

The experiment was designed to compare minimum-distance and energy-efficient 
planning on the basis of the energy expended (in joules). For energy expended, we 
intended to look at each configuration and consider the difference in energy usage 
between the 2 planning methods. We had originally considered using a paired t-test 
to examine the significance of the differences; however, we found that the 
variability of performance of the planners, possibly due to perception, made the 
power of such a test low. The results of Gupta et al.2 suggested an energy savings 
of 30%–40% might be possible on inclined planes, and the expectation was that an 
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energy savings of no more than that would be possible on a flat surface with a real 
system. Given such a savings, a paired t-test with 16 pairs, and with the variance 
actually observed, would have had a power of 0.99, thus failing to appropriately 
reject a null hypothesis of equality with probability 0.01 (at a 0.05 level of 
significance). However, if the energy saving was only 10%, the power would drop 
to 0.8, meaning we would fail to detect a true difference in the means with a 
probability of 0.2. Some of the variability in performance could be attributable to 
the performance of the algorithms with different terrain configurations. We cannot 
neglect the possibility, however, that some performance differences are due to 
perception errors—particularly in the extreme cases we discuss in Section 4.3. This 
added variability in performance would make it more difficult to detect a true 
difference in energy savings and would lower the power of the test. Thus, while we 
included the results of the originally planned paired t-tests, we are inclined to give 
more weight to the confidence intervals, and in particular to the confidence intervals 
with the extreme values removed. The difference in energy use between the 2 
planners is listed in Table 3 and the results of the previously mentioned tests are in 
Table 4. 

Table 3 Differences in energy expenditure by configuration 

Configuration Difference 
(MD–EE) Terrain 

1 88.34 Asphalt 
2 –876.61 Asphalt 
3 –974.22 Asphalt 
4 26.59 Asphalt 
5 2,919.41 Asphalt 
6 –166.71 Asphalt 
7 138.96 Asphalt 
8 1,453.43 Asphalt 
9 –971.19 Grass 

10 –828.91 Grass 
11 –2,775.33 Grass 
12 –922.88 Grass 
13 –2,819.5 Grass 
14 –5,394.35 Grass 
15 1,033.75 Grass 
16 –344.33 Grass 
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Table 4 Results of t-tests of actual energy use 

 All observations Extremes removed 

Number of pairs 16 14 

p-value 0.13 0.06 

Confidence interval for EE 
planner energy savings (–262, 1812) joules (–39, 1458) joules 

Average savings for the 
energy-efficient planner 775 joules 710 joules 

 

We also found that we needed to consider the possibility of a difference by terrain 
type. During exploratory data analysis, we noticed a difference in planner 
performance on grass and asphalt. The density of the differences in energy 
expenditure are shown in Fig. 3, separately for grass and asphalt. The amount of 
energy expended by each planner on each run is shown in Fig. 4. As shown in  
Figs. 3 and 4, the performance of the energy efficient planning seemed to be 
superior on grass, but no difference is discernable on asphalt. There was also a 
noticeable difference between the overall amount of energy expended on grass and 
on asphalt, with runs on asphalt using more energy than those on grass, as shown 
in Fig. 5. 

 

  

Fig. 3 Density of difference in energy expenditure within configurations by terrain 
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Fig. 4 Energy expenditure by terrain and planning type 

 

  

Fig. 5 Boxplot of aggregate energy use by terrain 
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We conducted the planned 2-sided t-test with a null hypothesis of no difference in 
the mean of actual energy expenditure between the 2 planners. This test neglects 
terrain and considers all differences as a sample from a single distribution. From 
this test, we obtained a p-value of 0.1319 and a 95% confidence interval of –262, 
1812 joules, which represents a confidence interval for the energy that the energy-
efficient planner would save, on average. In the process of checking our model, 
however, we examined a quantile–quantile (Q–Q) comparison with a normal 
distribution, shown in Fig. 8 of Section 4.3. This brought to our attention 2 extreme 
observations that while not in error, deviated substantially from the others. One 
represented the best performance of the energy-efficient planner relative to the 
minimum-distance planner, and one represented the worst performance by the 
energy-efficient planner relative to the minimum-distance planner. We conducted 
the t-test again, with these samples removed, and found that with this modification, 
one would find evidence of a difference between the planners, with a p-value of 
0.06 and a 95% confidence interval from –39, 1458 joules, again representing a 
confidence interval for the energy that would be saved by using the energy-efficient 
planner, on average. 

Based on the exploratory data analysis (Fig. 3), and on an examination of the 
collision data, which we will present later in this subsection, we also conducted an 
analysis of variance (ANOVA) to consider the interaction of terrain and planner. 
Because of the pairing, we conducted a 2-factor repeated measures ANOVA, 
thinking of each configuration as a subject and each planner as a treatment applied 
to each subject. Thus, the planner is considered a within-subject effect and the 
terrain was considered a between-subjects effect. The results are shown in Table 5 
and provide weak evidence for an interaction of terrain and planner type. While this 
could be due to the actual terrain, it could also represent the inadequate learning of 
the parameters for that terrain type, since parameter learning was conducted only 
at the start of the runs on a given terrain type.  

Table 5 ANOVA results 

 DF Sum square Mean square P value 
Terrain 1 1,999,605 1,999,605 0.2950 
Planner 1 64,700 64,700 0.8490 

Terrain: Planner 1 5,132,349 5,132,349 0.0988 
Residuals 26 45,516,174 1,750,622 . . . 

 
With the extremes of performance of the energy-efficient planner removed, there is 
evidence of an energy saving advantage to energy-efficient planning. Even with the 
extremes, however, the confidence intervals of Table 4, suggest that, if energy- 
efficient planning and minimum-distance planning use equal resources to perform, 
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one might expect, on average, to achieve energy savings from the energy-efficient 
planner. These confidence intervals are more informative than the p-value of the 
test because over a course of such short length there is unlikely to be a great 
difference in energy expenditure, making a difference between the planners 
difficult to detect, especially with variability added by other factors. Indeed, for the 
probability of falsely rejecting the null hypothesis to be equal to the probability of 
incorrectly failing to reject the null hypothesis (power of 0.9 at a significance level 
of 0.1), the energy-efficient planner would have needed a mean energy savings of 
1210 joules (20% over) the minimum-distance planner, which is likely difficult to 
obtain over a course with a length of 10 m. 

In path planning, obstacle avoidance can be achieved by placing a buffer around 
detected obstacles, and prohibiting the planner from planning a path within the 
buffered area. The smaller the buffer, the greater the likelihood of collision, and the 
larger the buffer, the less space available for planning paths. In this experiment, this 
buffer was set to be small, allowing for more flexibility in planning paths, but 
greater likelihood of collision. Therefore, although several collisions occurred with 
the minimum-distance planner, such collisions are not inherent to minimum-
distance planning, and could be avoided with greater constraints on the planner, 
which would presumably result in longer paths and higher energy use. However, 
since both planners used the same buffer around objects, we considered it 
reasonable to compare them based on these criteria. 

When, during the course of a run the robot touched an obstacle, the robot’s starting 
coordinates were checked to make sure that no error was caused by drift over the 
course of the experiment. If the starting coordinates were incorrect, the robot was 
rebooted and the run repeated. If the coordinates were accurate, a collision was 
recorded and the run counted. Table 6 shows the number of collisions by planner 
and terrain, and these results suggest an interaction of terrain and planner. Table 7 
shows the collision totals by planner type. While we cannot be certain of the reasons 
behind the greater number of collisions on the grass, the results of Table 6 and Figs. 
4 and 5 suggest a plausible reason: the grass was slippery and the asphalt was not. 
Slippery grass would make collisions more likely (Table 6) and would make turns 
less energy intensive, leading to less energy use on the grass (Fig. 4). Moreover, 
this slipperiness would be taken into account by the energy-efficient planner, after 
its learning phase, and not by the minimum-distance planner.  
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Table 6 Collisions by planner and terrain, with x/y indicating collisions in x out of y runs 

Terrain/planning method Min distance Energy efficient 
Grass 5/8 0/8 

Asphalt 0/8 0/8 
 

Table 7 Collision results matched for each configuration 

 Energy efficient 

Minimum 
distance 

 Collision No collision 
Collision 0 5 

No collision 0 11 

 
We consider the combination of Tables 4 and 5 as evidence of a potential advantage 
of the energy-efficient planner on the grass, and possibly on other slippery terrain. 
The advantage is not in avoiding collisions—which could be done by buffering 
around obstacles—but in planning paths that avoid them without such buffering, 
which represents a possible advantage because such buffering sometimes has the 
effect of making traversable paths appear untraversable.  

As a secondary goal, we wanted to verify that the learning process improved the 
performance of the energy-efficient planner. Considering the 4 configurations in 
which this comparison was made, a paired t-test of the actual energy expended 
provides evidence for rejecting the hypothesis that the mean energy expended is 
equal in favor of the alternative hypothesis that the difference in the means is not 
equal to 0 (p-value 0.06), with a 95% confidence interval of (–137, 2664) for the 
mean-energy savings gained by learning before using the energy-efficient 
algorithm. The actual values for these 4 runs are in Table 8. 

Table 8 Differences in actual energy by energy-efficient planning with and without 
learning 

Configuration Without learning–With learning 
(joules) 

7 –914 
8 –2492 
15 –457 
16 –1153 

4.2 Re-planning and Time 

Having made the comparisons for which the experiment was conducted, we briefly 
explore some secondary concerns: differences in re-planning and in time taken to 
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complete the course. Figures 6 and 7 are boxplots comparing the distributions of 
the number of re-plans due to trajectory corrections (tracking) and for the purpose 
of collision avoidance (collision). These plots show that the average number of 
tracking re-plans was similar, but that the distance planner needed a greater number 
of collision avoidance re-plans. Fewer collision avoidance re-plans suggests a more 
reasonable choice of path, but we note that a gain in time from fewer re-plans may 
be balanced by longer time taken to make the plan. No data were collected to 
examine this because the tradeoff between frequent-but-hasty planning versus 
better-but-lengthier planning was not an important aspect of the experiment. Table 
9 provides the average number of re-plans by planner, type of re-plan, and terrain, 
as well as the average length of time to complete the course by terrain and planner 
type. This table, along with a plot of the completion times in Fig. 8, suggest that the 
route chosen by energy-efficient planning does not necessarily take longer to 
complete than that chosen by minimum-distance planning; although the added time 
due to collisions and the short courses involved make us wary of drawing much 
from the completion time data. The re-planning and time data provide no evidence 
of worse performance by the energy-efficient planner. 

 

 

Fig. 6 Number of tracking re-plans by planning type 
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Fig. 7 Number of collision re-plans by planning type 

 

Table 9 Re-plans by terrain and planner 

Terrain Planner Average no. 
tracking re-plans 

Average no. 
collision re-plans 

Time 
(s) 

Grass Distance 5.1 9.0 25.1 
Energy 4.0 6.7 24.0 

Asphalt Distance 3.6 10.5 24.9 
Energy 4.1 6.3 24.1 
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Fig. 8 Time to complete the course by planner type 

4.3 Outliers and Model Checking 

In examining Table 4, the results from configuration 5 stood out from the other 
asphalt runs, and the results of configuration 14 stood out from the other grass runs. 
Consequently, we re-examined the video from these runs to see if anything unusual 
effected the results. We found nothing unusual in the runs. In configuration 5, the 
energy-efficient planner just chose a longer route to avoid sharper turns, and paid a 
price in energy consumption for it. Likewise, in configuration 14 the choice of the 
energy-efficient planner simply paid off better, both in energy saved and in 
avoiding barrel collisions. In either case, the odd choice of path could have been 
influenced by perceptual errors or by errors in other parts of the system. 

Our use of the paired t-test for analysis assumes that the differences in energy 
expended by the minimum-distance and energy-efficient planners are 
approximately normally distributed. Figure 9 shows a normal Q–Q plot of these 
differences. The assumption of normality seems appropriate, although the 2 
configurations mentioned previously deviate significantly from the line 
representing a normal distribution. 
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Fig. 9 Normal Q–Q plot of differences in energy expended for each configuration. The line 
shows the path a normal distribution would follow.  

In Section 4.1, we conducted tests to determine whether we should expect a 
difference in mean energy use between the 2 planners. We conducted these tests 
using all pairs of runs, excluding the extreme values represented by configurations 
5 and 14. The exclusion of these values does not mean they are in error and a review 
of the video suggests no measurement error in them; they simply represent extreme 
failures of the energy-efficient/minimum-distance planners in configurations 5 and 
14. Such occasional failures are common in robotics and could represent failures 
by other aspects of the system—for example, perception or localization.  

While the results with and without extreme values differ in their p-values, the 
confidence intervals are similar and both suggest that on average, energy-efficient 
planning really is more energy efficient as compared with the minimum-distance 
planner used for these tests. 

5. Conclusions 

The energy-efficient planning proposed in Ordonez et al.1 and Gupta et al.2 showed 
promise—demonstrating superior performance on grass, navigating with fewer 
collisions, and expending less energy on average. There was not a clear difference 
on asphalt, however. Overall, there is evidence to suggest that on average, energy-
efficient planning will save energy—at least by comparison with the version of 
minimum-distance planning with which it was compared here. It would be 
beneficial to examine the differences in performance when the platforms operate 
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on slopes, where energy-efficient planning could be expected to have substantially 
greater performance. The test courses were small but it is reasonable to expect that 
the advantages in energy expenditure may hold up on a larger scale, provided a map 
is available for the energy-efficient planner to use. On a larger scale, however, the 
assumption that terrain can be approximated by a plane would not be reasonable 
and an extension of the algorithm will be required for this situation. We would 
expect that on a more cluttered course, with a good map, the energy-efficient 
planner would have a greater advantage, while a course that is more open, or one 
without an available map, would reduce or eliminate the advantages of energy-
efficient planning.  
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Appendix. Data from Runs
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Table A-1 Recorded data from all runs 

Terrain Block Planner Tracking 
re-plan 

Collision 
re-plan 

Actual 
energy Collision Run Time 

Asphalt 1 Distance 5 4 6,838.24 No 1 20 
Asphalt 1 Energy 4 9 6,926.58 No 2 22 
Asphalt 2 Energy 3 6 5,972.92 No 3 30 
Asphalt 2 Distance 3 14 7,849.53 No 4 26 
Asphalt 3 Energy 6 8 6,651.2 No 5 25 
Asphalt 3 Distance 5 18 8,625.42 No 6 26 
Asphalt 4 Energy 4 5 7,058.7 No 7 27 
Asphalt 4 Distance 2 25 7,032.11 No 8 26 
Asphalt 5 Distance 3 4 4,305.44 No 9 26 
Asphalt 5 Energy 3 5 7,224.85 No 10 25 
Asphalt 6 Distance 5 1 5,211.67 No 11 23 
Asphalt 6 Energy* 8 0 4,130.46 No 12 26 
Asphalt 6 Energy 5 4 5,044.96 No 13 24 
Asphalt 7 Energy* 9 3 3,491.94 No 14 28 
Asphalt 7 Distance 3 8 5,844.71 No 15 28 
Asphalt 7 Energy 5 0 5,983.67 No 16 24 
Asphalt 8 Distance 3 10 5,603.29 No 17 24 
Asphalt 8 Energy 3 13 7,056.72 No 18 24 
Grass 9 Energy 4 6 4,695.81 No 19 24 
Grass 9 Distance 3 14 5,667 Yes 20 NA 
Grass 10 Distance 7 1 5,101.76 No 21 23 
Grass 10 Energy 5 2 4,272.85 No 22 24 
Grass 11 Distance 7 15 6,631.67 Yes 23 26 
Grass 11 Energy 6 2 3,856.34 No 24 23 
Grass 12 Distance 4 3 3,512.46 No 25 22 
Grass 12 Energy 2 6 2,589.58 No 26 21 
Grass 13 Distance 5 18 7,472.84 Yes 27 25 
Grass 13 Energy 2 15 4,653.34 No 28 22 
Grass 14 Energy 4 3 3,530.1 No 29 24 
Grass 14 Distance 6 13 8,924.45 Yes 30 28 
Grass 15 Energy 6 8 5,079.44 No 31 25 
Grass 15 Energy* 6 17 4,622.06 Yes 32 26 
Grass 15 Distance 3 7 4,045.69 Yes 33 25 
Grass 16 Energy* 6 10 4,651.31 No 34 25 
Grass 16 Distance 4 6 6,148.35 No 35 27 
Grass 16 Energy 3 11 5,804.02 No 36 29 
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Table A-2 Definitions for all recorded variables 

Variable Definition 

Terrain Type of terrain (grass vs. asphalt) 

Block The configuration of barrels 

Planner The type of planner used (minimum distance, and energy 
efficient with or without learning) 

Tracking re-plan The number of times re-planning was done because the 
trajectory was different from that originally planned 

Collision re-plan The number of times re-planning was done because the 
trajectory was different from that originally planned 

Actual energy Joules used during the run 

HitBarrel Denotes a collision with a barrel (1) or no collisions (0) 

Run The number of the run 

Time The length of time it took the run to complete 
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List of Symbols, Abbreviations, and Acronyms 

ANOVA analysis of variance 

ARL  US Army Research Laboratory 

EE    energy efficient 

EE Default energy efficient without terrain learning 

MD    minimum distance 

Q–Q  quantile–quantile 

RCTA  Robotics Collaborative Technology Alliance 
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